Ferramentas do usuário

Ferramentas do site


ti_publica:notas_deep_learning

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Última revisão Ambos lados da revisão seguinte
ti_publica:notas_deep_learning [2019/10/01 11:39]
cartola
ti_publica:notas_deep_learning [2019/10/01 12:45]
cartola [Dicas lição 2]
Linha 30: Linha 30:
   * Não há como definir quanto material é necessário pra um treino, só testando. Se treinar com muitas iterações e o erro começar a piorar sem antes ter chegado onde quer, e se não tiver com um dos quatro problemas mencionados, pode precisar de mais dados.   * Não há como definir quanto material é necessário pra um treino, só testando. Se treinar com muitas iterações e o erro começar a piorar sem antes ter chegado onde quer, e se não tiver com um dos quatro problemas mencionados, pode precisar de mais dados.
   * Dados desproporcionais (muito mais dados de uma das classes) também funcionam, teste. Se não funcionar uma ideia é fazer //over sampling//, copiando os dados que tem pra aumentar.   * Dados desproporcionais (muito mais dados de uma das classes) também funcionam, teste. Se não funcionar uma ideia é fazer //over sampling//, copiando os dados que tem pra aumentar.
 +
 +===== Álgebra =====
 +
 +==== Equações lineares ====
 +
 +  * Notação equação reduzida da reta: y = ax + b
 +    * a = coeficiente de inclinação da reta (tb chamado 'm'): m = Δy / Δx
 +    * b = ponto onde a reta corta o eixo y
 +    * Para operações matriciais é mais conveniente redigir como: y = ax<sub>1</sub> + bx<sub>2</sub>, com x<sub>2</sub> = 1 sempre
 +    * Mais convenientemente ainda pode ser notada assim para um conjunto de dados: {{:ti_publica:equcacao_linear_matricial.gif|}}, onde a<sub>2</sub> era o b e x<sub>i,2</sub> = 1 sempre.
 +  * Notação equação fundamental da reta: ''y-b = m(x-a)''
 +    * Mais prática pra escrever a partir de m e um ponto (a,b), mas não dá a interceptação do eixo y
 +
 +===== pi torch =====
 +
 +==== Criando um vetor====
 +  * ''x = torch.ones(n,2)'' inicia um tensor com n linhas e 2 colunas, segunda coluna com '1's (vide álgebra pra facilitar operações matriciais)
 +  * ''x[:,0].uniform_(-1.,1)'' - cria dados randômicos entre -1 e 1 na primeira coluna do vetor:
 +    * ''[:]'' endereça cada valor na dimensão (no caso endereça toda a linha);
 +    * ''0'' pega a primeira coluna;
 +    * ''uniform'' vai criar distribuição uniforme randômica;
 +    * O '_' indica que não vai retornar valor, vai atribuir valor a variável referida.
 +
ti_publica/notas_deep_learning.txt · Última modificação: 2019/10/01 13:08 por cartola