Ferramentas do usuário

Ferramentas do site


ti_publica:dicas_ia

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Próxima revisão
Revisão anterior
ti_publica:dicas_ia [2019/11/22 11:20]
cartola [Glossário]
ti_publica:dicas_ia [2019/12/22 06:58] (atual)
cartola [Referências]
Linha 1: Linha 1:
-==== Dicas ====+===== Dicas ====
 + 
 +Referência externa muito boa: https://chrisalbon.com/
  
 ===  === ===  ===
   * [[https://machinelearningmastery.com/cross-entropy-for-machine-learning/|Toda vez que a saída for binária a função objetivo é uma entropia cruzada binária]]   * [[https://machinelearningmastery.com/cross-entropy-for-machine-learning/|Toda vez que a saída for binária a função objetivo é uma entropia cruzada binária]]
   * Toda vez que saída for categorizada: Função **softmax** vai dar saída como probabilidade de um input pertencer a uma classe. Função objetivo é entropia cruzada categorizada   * Toda vez que saída for categorizada: Função **softmax** vai dar saída como probabilidade de um input pertencer a uma classe. Função objetivo é entropia cruzada categorizada
 +  * Séries temporais com sazonalidade podem ser melhor tratadas com decomposição do que com LSTM
  
 === NLP === === NLP ===
   * Imagem e áudio tem informações densas, texto é esparso   * Imagem e áudio tem informações densas, texto é esparso
 +  * Pode se fazer CNN em NLP
 +  * Problema do Word embedding: não lida com contexto (ex: manga fruta, manga da roupa)
 +    * Google lançou Transformer (+- embedding com contexto)
 +  
  
-==== Glossário ====+===== Glossário =====
   * Função de ativação   * Função de ativação
   * Função objetivo   * Função objetivo
Linha 18: Linha 25:
   * one hot encoding / get dummies / to categorical   * one hot encoding / get dummies / to categorical
   * SVM   * SVM
 +  * PCA
 +  * TSNE
  
-=== Álgebra Linear+=== Álgebra Linear ===
   * Matriz esparsa   * Matriz esparsa
   * Convolução   * Convolução
Linha 37: Linha 46:
     * rede neural convolucional     * rede neural convolucional
     * fully convolutional     * fully convolutional
 +    * recorrentes - usado para NLP, séries temporais, sequências, dados seriados: tradução, respostas a perguntas, completar frases
 +      * LSTM - RNN mais usada hoje em dia (Long Short-Term Memory) - Keras implementa
  
 === NLP === === NLP ===
   * Word embedding - reduz dimensões mantendo significado   * Word embedding - reduz dimensões mantendo significado
   * //Corpus// de texto   * //Corpus// de texto
 +  * Stop-words - palavras que se repetem muito, como pronomes e artigos
   * Algoritmos   * Algoritmos
     * CBOW - Continuous Bag-of-Words - prevê próxima palavra pelas N anteriores     * CBOW - Continuous Bag-of-Words - prevê próxima palavra pelas N anteriores
     * Skip-gram - contrário do CBOW - prevê N próximas palavras a partir da anterior     * Skip-gram - contrário do CBOW - prevê N próximas palavras a partir da anterior
     * Word2Vec - implementação eficiente do CBOW e Skip-gram     * Word2Vec - implementação eficiente do CBOW e Skip-gram
 +  * Bibliotecas
 +    * [[http://www.nltk.org/|NLTK]]
  
-==== Referências ====+===== Referências =====
   * [[https://www.fast.ai/|Fast.AI]] - biblioteca sobre PyTorch e cursos   * [[https://www.fast.ai/|Fast.AI]] - biblioteca sobre PyTorch e cursos
   * [[https://keras.io/|Keras]] - biblioteca feita sobre Tensorflow   * [[https://keras.io/|Keras]] - biblioteca feita sobre Tensorflow
 +  * NLP 
 +    * [[https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html|SciKit]] 
 +    * [[https://nlp.stanford.edu/projects/glove/|GloVe]] - usa vetores 
 +    * [[https://fasttext.cc/|Fast Text]] - usa vetores - tem pronto em PT 
 +    * [[https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html|Google Transformer]] - supra sumo, considera contexto. [[https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/|Análise]] 
 +  * RNN - [[http://colah.github.io/posts/2015-08-Understanding-LSTMs/|LSTM]] 
 +  * Séries temporais - decomposição de séries - [[https://facebook.github.io/prophet/docs/quick_start.html|Prophet]] 
 +  * [[https://www.knime.com/knime-analytics-platform|Knime]] - ferramenta opensource gráfica para ciência de dados
ti_publica/dicas_ia.1574432434.txt.gz · Última modificação: 2019/11/22 11:20 por cartola