Ferramentas do usuário

Ferramentas do site


ti_publica:dicas_ia

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Próxima revisão
Revisão anterior
ti_publica:dicas_ia [2019/11/22 08:41]
cartola criada
ti_publica:dicas_ia [2019/12/22 06:58] (atual)
cartola [Referências]
Linha 1: Linha 1:
-=== Referências ===+===== Dicas ===== 
 + 
 +Referência externa muito boa: https://chrisalbon.com/ 
 + 
 +===  === 
 +  * [[https://machinelearningmastery.com/cross-entropy-for-machine-learning/|Toda vez que a saída for binária a função objetivo é uma entropia cruzada binária]] 
 +  * Toda vez que saída for categorizada: Função **softmax** vai dar saída como probabilidade de um input pertencer a uma classe. Função objetivo é entropia cruzada categorizada 
 +  * Séries temporais com sazonalidade podem ser melhor tratadas com decomposição do que com LSTM 
 + 
 +=== NLP === 
 +  * Imagem e áudio tem informações densas, texto é esparso 
 +  * Pode se fazer CNN em NLP 
 +  * Problema do Word embedding: não lida com contexto (ex: manga fruta, manga da roupa) 
 +    * Google lançou Transformer (+- embedding com contexto) 
 +   
 + 
 +===== Glossário ===== 
 +  * Função de ativação 
 +  * Função objetivo 
 +  * Random forest 
 +  * max pooling / average pooling / global pooling - [[https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/|reduz a quantidade de informação]] 
 +  * back propagation 
 +  * learning rate 
 +  * data augmentation - ex: [[https://github.com/aleju/imgaug|imgaug]] 
 +  * one hot encoding / get dummies / to categorical 
 +  * SVM 
 +  * PCA 
 +  * TSNE 
 + 
 +=== Álgebra Linear === 
 +  * Matriz esparsa 
 +  * Convolução 
 +  * Variância / Desvio padrão 
 +  * MSE - Erro mínimo quadrático 
 +  * Regressão linear, logística 
 + 
 +=== Redes Neurais === 
 +  * [[http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf|Dropout]] - descarte aleatório de informação - eficiente para evitar overfiting 
 +  * softmax 
 +  * Modelos de rede criados 
 +    * AlexNet 
 +    * VGG 
 +  * overfiting 
 +  * Redes neurais 
 +    * multi layer perceptor 
 +    * rede neural convolucional 
 +    * fully convolutional 
 +    * recorrentes - usado para NLP, séries temporais, sequências, dados seriados: tradução, respostas a perguntas, completar frases 
 +      * LSTM - RNN mais usada hoje em dia (Long Short-Term Memory) - Keras implementa 
 + 
 +=== NLP === 
 +  * Word embedding - reduz dimensões mantendo significado 
 +  * //Corpus// de texto 
 +  * Stop-words - palavras que se repetem muito, como pronomes e artigos 
 +  * Algoritmos 
 +    * CBOW - Continuous Bag-of-Words - prevê próxima palavra pelas N anteriores 
 +    * Skip-gram - contrário do CBOW - prevê N próximas palavras a partir da anterior 
 +    * Word2Vec - implementação eficiente do CBOW e Skip-gram 
 +  * Bibliotecas 
 +    * [[http://www.nltk.org/|NLTK]] 
 + 
 +===== Referências =====
   * [[https://www.fast.ai/|Fast.AI]] - biblioteca sobre PyTorch e cursos   * [[https://www.fast.ai/|Fast.AI]] - biblioteca sobre PyTorch e cursos
   * [[https://keras.io/|Keras]] - biblioteca feita sobre Tensorflow   * [[https://keras.io/|Keras]] - biblioteca feita sobre Tensorflow
 +  * NLP 
 +    * [[https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html|SciKit]] 
 +    * [[https://nlp.stanford.edu/projects/glove/|GloVe]] - usa vetores 
 +    * [[https://fasttext.cc/|Fast Text]] - usa vetores - tem pronto em PT 
 +    * [[https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html|Google Transformer]] - supra sumo, considera contexto. [[https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/|Análise]] 
 +  * RNN - [[http://colah.github.io/posts/2015-08-Understanding-LSTMs/|LSTM]] 
 +  * Séries temporais - decomposição de séries - [[https://facebook.github.io/prophet/docs/quick_start.html|Prophet]] 
 +  * [[https://www.knime.com/knime-analytics-platform|Knime]] - ferramenta opensource gráfica para ciência de dados
ti_publica/dicas_ia.1574422888.txt.gz · Última modificação: 2019/11/22 08:41 por cartola